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PROBLEM TRAINING STRATEGY

Deep convolutional neural network has
achieved great success on large-scale image
classification task. However, how to etfectively
train deep network on small dataset is still a
challenging problem.

Conventional method is to fine-tune a deep
network trained on face recognition dataset to
adapt to the facial expression recognition task.
This simple strategy has two notable problems:
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1. The fine-tuned face net may still contain in-
formation usetul for subject identification.

2. The network designed for the face recogni-
tion domain often has a large capacity, thus

ant bt S Two-stage Training Algorithm. In stage (a),
the overfitting issue is still severe.

the face net is frozen and provides supervision for
the expression net. The regression loss is back-
proped only to the expression net. The convolu-
tional layers are trained in this stage. In stage (b),
the randomly initialized fully-connected layers
are attached to the trained convolutional blocks.
The whole network is trained jointly with cross-
entropy loss.

METHOD

The distribution function of the high-level
neurons can be formulated as follows:
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To incorporate the knowledge of a face net, we
propose to extend (1) to have the following form,
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The mean is modeled by the face net. This is mo-
tivated by the observation that the fine-tuned face
net already achieves competitive performance on
the expression dataset, so it should provide a
good initialization point for the expression net.

Using the maximum likelihood estimation
(MLE) procedure, we can derive the loss function
as:
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The red-boxed images are generated by the
model trained with our method, while the black-
boxed images are from the face network fine-
tuned on the expression dataset. We can see the
images produced by the face net are dominated

e Which layer to transfer?

Our experiment results suggest that late mid-
dle layer, such as pool5, is a good tradeoff be-
tween supervision richness and representation
discriminativeness.

with faces, while our model represents the facial
expressions better.
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SUMMARY

We propose a probabilistic distribution func-
tion to model the high level neuron response
based on already fine-tuned face net, thereby lead-
ing to feature level regularization that exploits the
rich face information in the face net. In the second
stage, we perform label supervision to boost the

final discriminative capability.

As a result, FaceNet2ExpNet improves visual
feature representation and outperforms various
state-of-the-art methods on four public datasets.
In future, we plan to apply this training method
to other domains with small datasets.




