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Deep Learning is Changing our Lives 

Self-Driving Car AlphaGo

Machine Translation Face Recognition2



Deep Face Recognition is Successful 

Taigman, Yaniv, et al. "Deepface: Closing the gap to human-level performance 
in face verification." CVPR, 2014.

Human

Deep Face
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Deep Facial Expression Recognition 
is Relatively Unexplored  



The First Challenge: Small Datasets 

Face Datasets # Images

CASIA-
WebFace

494,414

VGG Face 2,600,000

Facebook 4,400,000

MS-Celeb-1M 10,000,000

Expr. Datasets # Images

CK+ 1,308

OULU-CASIA 1,440

TFD 4,178

SFEW 1,322

Hard to train an accurate expression classifier
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The Second Challenge: In-the-wild 
Conditions 

Occlusion and pose decrease the model performance greatly
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The Third Challenge: No Fine-
Grained Dataset 

Hard to collect expression datasets with fine-grained labels
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Agenda 
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✦ Generative Model (Fine-Grained) 
• ExprGAN

✦ Robust Model Design (Occlusion, Pose) 
• Occlusion Robust Deep Network 
• Unaligned Attribute Classifier

✦ Transfer Learning (Small Datasets) 
• FaceNet2ExpNet



Agenda 

✦ Transfer Learning (Small Datasets) 
• FaceNet2ExpNet 

✦ Robust Model Design (Occlusion, Pose) 
• Occlusion Robust Deep Network 
• Unaligned Attribute Classifier 

✦ Generative Model (Fine-Grained) 
• ExprGAN
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How to train an accurate expression 
classifier for small datasets? 

10



FaceNet2ExpNet: Regularizing a 
Deep Face Recognition Net for 

Expression Recognition
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Hui Ding, Shaohua Kevin Zhou and Rama Chellappa, IEEE International 
Conference on Automatic Face Gesture Recognition (FG), 2017.



Conventional Transfer Learning 
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Feature Visualization 

Expr. Info  
is captured
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Feature Visualization 

Identity info 
 is still left
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Can we utilize the face recognition network to help 
the training of the expression recognition network 

without the redundant identity information? 
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Motivation 



FaceNet2ExpNet 
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1.Fine Tune  
Face Net
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2.Train Conv.  
Layers by Matching  

Feature Maps
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3. Jointly Train  
Conv. and FC 

Layers
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Feature Visualization 

FaceNet2ExpNet

Fine-tune FaceNet

FaceNet2ExpNet

Fine-tune FaceNet
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Classification Accuracy 
CK+ 
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Classification Accuracy  
OULU-CASIA 
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Classification Accuracy 
TFD 
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Classification Accuracy 
SFEW 
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CK+ OULU CASIA

Expression Recognition for 
Frontal Faces 
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FaceNet2ExpNet



Expression Recognition for  
In-the-wild Faces 
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RAF AffectNet

Li et al. "Reliable crowdsourcing and deep locality-preserving learning for expression 
recognition in the wild." CVPR. 2017.

Mollahosseini et al. "Affectnet: A database for facial expression, valence, and 
arousal computing in the wild." IEEE Transactions on Affective Computing. 2017.



Agenda 

✦ Transfer Learning (Small Datasets) 
• FaceNet2ExpNet 

✦ Robust Model Design (Occlusion, Pose) 
• Occlusion Robust Deep Network 
• Unaligned Attribute Classifier 

✦ Generative Model (Fine-Grained) 
• ExprGAN
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Occlusion Adaptive Deep Network for 
Robust Facial Expression Recognition  

32

Hui Ding, Peng Zhou, and Rama Chellappa, Submitted to IJCB 2020



Related Works 
Common goal: learn features from non-occluded regions
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gACNN (2019) RAN (2020)



Occlusion Adaptive Deep Network 
 (OADN) 
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Interest Points 
Selection

35

Landmark-guided Attention Branch  
(LAB) 

 



Interest Points Selection 
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Attention Map 
Generation
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Landmark-guided Attention Branch  
(LAB) 

 



Attention Map Generation 
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Feature 
Modulation

Landmark-guided Attention Branch  
(LAB) 
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Region-level 
Classifier

Facial Region Branch  
(FRB) 
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Training Loss 
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Interest Points Selection Results 
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Experiments  

43

Datasets Train Test In-the-wild Occlusion 
Specific

Pose 
Specific

RAF 12,271 3,068 Yes

AffectNet 280,000 3,500 Yes

Occlusion-
AffectNet N/A 682 Yes

Pose>30 
AffectNet N/A 1,949 Yes

Pose>45 
AffectNet N/A 985 Yes

Occlusion-
FER N/A 605 Yes

Pose>30 FER N/A 1,171 Yes

Pose>45 FER N/A 634 Yes

FED-RO N/A 400 Yes
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3%

Recognition Accuracy Comparison on 
Occlusion and Pose Datasets 



Recognition Accuracy Comparison on 
Occlusion and Pose Datasets 
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Ablation Study 

46



Ablation Study 
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Ablation Study 
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Expression Recognition Results 
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From Expression Recognition to 
Attributes Classification 

50



Agenda 

✦ Transfer Learning (Small Datasets) 
• FaceNet2ExpNet 

✦ Robust Model Design (Occlusion, Pose) 
• Occlusion Robust Deep Network 
• Unaligned Attribute Classifier 

✦ Generative Model (Fine-Grained) 
• ExprGAN
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A Deep Cascade Network for 
Unaligned Face Attribute Classification  

52

Hui Ding, Hao Zhou, Shaohua Kevin Zhou and Rama Chellappa, AAAI, 2018.



Motivation 

Attend to the most related regions for attributes recognition
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Localization Network 

Reced. Hairline 

Smiling 

Region Discovery Attribute Classification Network 

RSL ARL 64x64 

64x64 

224x224 

Unaligned Attribute Classifier (UAC) 
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Localization Network 

Reced. Hairline 

Smiling 

Region Discovery Attribute Classification Network 

RSL ARL 64x64 

64x64 

224x224 

Region Localization Network 

 

55



Localization Network 

Reced. Hairline 

Smiling 

Region Discovery Attribute Classification Network 

RSL ARL 64x64 

64x64 

224x224 

Attribute Classification Network 
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Face Region Localization Results 
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Region Switch Layer 
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Attribute Relation Layer 
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Attributes Classification Accuracy 



✦ Challenge 1:           
    training datasets are small 

✦ Challenge 2: 
    occlusion and pose 

From Expression Recognition to 
Attributes Classification 

61



✦ Challenge 1:           
    training datasets are small 

✦ Challenge 2: 
    occlusion and pose 

From Expression Recognition to 
Attributes Classification 

62

✓ FaceNet2ExpNet: 
    12x smaller, high accuracy 

✓ OADN/UAC: 
    occlusion robust 

no need of face alignment 



✦ Challenge 1:           
    training datasets are small 

✦ Challenge 2: 
    occlusion and pose 

From Expression Recognition to 
Attributes Classification 

✓ FaceNet2ExpNet: 
    12x smaller, high accuracy 

✓ OADN/UAC: 
    occlusion robust 

no need of face alignment 
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✦ Challenge 1:           
    training datasets are small 

✦ Challenge 2: 
    occlusion and pose 

From Expression Recognition to 
Attributes Classification 

✓ FaceNet2ExpNet: 
    12x smaller, high accuracy 

✓ OADN/UAC: 
    occlusion robust 

no need of face alignment 
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Agenda 

✦ Transfer Learning (Small Datasets) 
• FaceNet2ExpNet 

✦ Robust Model Design (Occlusion, Pose) 
• Occlusion Robust Deep Network 
• Unaligned Attribute Classifier 

✦ Generative Model (Fine-Grained) 
• ExprGAN
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ExprGAN: Facial Expression Editing 
with Controllable Expression Intensity 

66

Hui Ding, Kumar Sricharan and Rama Chellappa, AAAI 2018, Oral.



Ian Goodfellow’s twitter

Face Generation 
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Expression Generation 

Generating Facial Expressions with Deep Belief Nets 

 

433 

 

Figure 5. Face images sampled from the conditional distribution of features and AUs given 
an AU label. Each row shows 7 results after clamping a particular AU label to “on” and 
running alternating Gibbs sampling at the top-level RBM for 1000 iterations, and generating 
an image via a directed down-pass through the network, resulting in pixel probabilities 
observed at the visible image layer. Above each face image is the associated AU vector that 
the network settled on, indicating from left to right AUs 1, 2, 4, 5, 10, 12, 14, and 20. 

2008

Learning to Disentangle Factors of Variation with Manifold Interaction

(a) Expression manifold traversal on TFD

(b) Pose manifold traversal on Multi-PIE
Figure 5. Visualization of (a) expression and (b) pose manifold
traversal. Each row shows samples of varying expressions or pose
with same identity as in input (leftmost).

ure 6(a) and 6(b).

6.3. Discriminative performance
To measure the usefulness of our features and the degree of
disentangling, we apply our model to emotion recognition,
pose estimation and face verification on TFD and Multi-
PIE. For experiments on TFD, we built a 2-layer model
whose first layer is constructed with convolutional features
extracted using the filters trained with OMP-1 followed by
4⇥4 max pooling (Coates & Ng, 2011). We used the same
model in Section 6.2 for the tasks on Multi-PIE.

We carried out control experiments of our proposed train-
ing strategies and provide summary results in Table 2 and 3.
We report the performance of pose estimation and face
verification for Multi-PIE, and emotion recognition and
face verification for TFD. For pose estimation and emo-
tion recognition, we trained a linear SVM and reported the
percent accuracy. For face verification, we used the cosine
similarity as a score for the image pair and report the AU-
ROC. Both numbers are averaged over 5 folds.

We observed that the naive training without any regular-
ization gets mediocre performance on both datasets. By
adding pose or emotion labels, we see improvement in pose
estimation and emotion recognition as expected, but also

(a) Expr. transfer. (b) Pose transfer.
Figure 6. Identity units from left column are transferred to (a) ex-
pression units and (b) pose units from middle column. Recon-
structions shown in right columns.

Table 4. Performance comparison of discriminative tasks on
Multi-PIE. RBM stands for the second layer RBM features trained
on the first layer RBM features.

MODEL POSE
ESTIMATION

FACE
VERIFICATION

RBM 93.06± 0.33 0.615± 0.002
DISBM 98.20± 0.12 0.975± 0.002

slightly better verification performance on both datasets.
In addition, we observed a modest degree of disentangling
(e.g., ID units performed poorly on pose estimation). The
clamping method for ID units between corresponding im-
age pairs showed substantially improved face verification
results on both datasets. Combined with labels connected
to the pose or expression units, the pose estimation and
emotion recognition performance were improved. Finally,
the best performance is achieved using manifold-based reg-
ularization, showing not only better absolute performance
but also better disentangling. For example, while the ex-
pression units showed the best results for emotion recogni-
tion, the ID units were least informative for emotion recog-
nition and vice versa. This suggests that good disentan-
gling is not only useful from a generative perspective but
also helpful for learning discriminative features.

We provide a performance comparison to the baseline and
other existing models. Table 4 shows a comparison to a
standard (second layer) RBM baseline using the same first
layer features as our disBM on Multi-PIE. We note that
the face verification on Multi-PIE is challenging due to
the extreme pose variations. However, our disentangled
ID features surpass this baseline by a wide margin. In Ta-
ble 5, we compare the performance of our model to other
existing works on TFD. The disBM features trained with
manifold objectives achieved state-of-the-art performance
in emotion recognition and face verification on TFD.

To highlight the benefit of higher-order interactions, we

2014 2016

Figure 4: Comparison of synthesized expressions. Left block: Synthesis from a neutral expression source image to ex-
pression of disgust. Right block: Synthesis from a smile expression source image to a neutral expression. Our method
demonstrates better low-level image quality and more realistic expressions compared to the baselines.

as it is directly generating pixels to minimize the `
2

-norm
loss. However, judging by the perceptual quality, our FVAE
significantly outperforms the VAE; VAE generates overly
smooth images with poor low-level image quality (e.g., hair
and skin textures). This just demonstrates that PSNR is not
an ideal quantitative measurement for this task.

Method PSNR
Ours 18.14

Ours w/ Confidence 18.35
VAE [13, 21] 25.41

Epic Flow [23] 15.76

Table 1: PSNR comparison between different methods.
Higher is better.

Next, we demonstrate that the proposed FVAE method
can be transferred to out-of-dataset samples and expres-
sions. Figure 5 demonstrates that our method can be used
to edit web images to suppress or magnify the facial expres-
sions. The third row in Figure 5, is the expression of fear,
which is not in the dataset; however, the editing can be still
be done by approximating Z

source

= Z(S), in Algorithm
1. Note that for web-images to generate reasonable quality
images, the background needs to be clean and the face re-
gion should not contain significant lighting variations, such
as shadows.

2Images from [28] and
http://www.soalinejackphotography.com

Figure 5: Magnify and suppress the facial expression. Left:
Synthesized suppressed expression. Center: Original im-
age.2Right: Synthesized magnified image.

6.2. Facial Expression Interpolation

For the facial expression interpolation task, we compared
our method against five different methods: VAE, cross-
fading, mesh morphing [26], optical flow [15], and face

Deep  
Belief Network

Gated  
Boltzmann Machine

Variational  
Auto-encoder

68
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Expression Editing is Multi-modal 
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Expression Editing is Multi-modal 



—First GAN-based model for 
facial expression editing  

What is ExprGAN 
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What is ExprGAN 
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How to generate images displaying different 
expression intensities when we only have 
training images labeled with categories? 
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Expression Controller Module 
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Expression Regularization  
Network 
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Generator  Network: Encoder and Decoder 
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Generator  Network: Encoder and Decoder 
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Generator  Network: Encoder and Decoder 
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Generator  Network: Encoder and Decoder 
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Generator  Network: Encoder and Decoder 
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Discriminator on Identity 
Representation 

81



Discriminator on Image 
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Overall Objective Function 
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Mode Collapse  

Difficult to Train the Model 
with Limited Data 

84



Curriculum Training  

Limited Training Data? 
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• Controller Learning 
• Image Reconstruction 
• Image Refinement

Curriculum Training 
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Controller Learning Stage 
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Images from Controller Learning Stage 
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Image Reconstruction Stage 
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Images from Reconstruction Stage 
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Image Refining Stage 

Good to Go!
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Images from Refining Stage 
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Dataset 
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Dataset Angry Disgust Fear Happy Sad Surprise Total

Oulu-
CASIA 240 240 240 240 240 240 1,440



Happy

Sad

Fear

Input Angry Disgust Fear SadHappy Surprise

GT

ExprGAN

CAAE

GT

ExprGAN

CAAE

GT

ExprGAN

CAAE

Zhang, Zhifei, Yang Song, and Hairong Qi. "Age Progression/Regression by Conditional Adversarial Autoencoder." CVPR (2017).
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Expression Editing 



Disgust
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Strong
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Sad

Disgust SurpriseSadHappyAngry Fear Neutral
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Expression Editing with 
Controllable Intensity 



IdA ExprB IdA+ExprB IdA ExprB IdA+ExprB
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Expression Transfer 



Angry

Fear

Happy

Sad

Surprise

Disgust
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Synthetic Images for Data 
Augmentation 
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Identity Feature Visualization 



Query ! "#
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Expression Feature Visualization 



Summary 

✦ Transfer Learning (Small Datasets) 
• FaceNet2ExpNet 

✦ Robust Model Design (Occlusion, Pose) 
• Occlusion Robust Deep Network 
• Unaligned Attribute Classifier 

✦ Generative Model (Fine-Grained) 
• ExprGAN
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Future 

Self-supervised learning will play an important role
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Thank you!
Codes & Models: www.huiding.org
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http://www.huiding.org

